SINGLE CONTROL THERMOSTATIC VALVES AND THERMOSTAT CONTROL DEVICES TECHNICAL DATA SHEET - 09/2019 - ENG #### **FUNCTION** Thermostatic expansion valves are used to regulate and cut-off the flow of the heat transfer fluid that circulates inside air-conditioning system terminals (radiators, fan coils, etc.). Thermostat control devices are used in combination with the thermostatic expansion valves to automatically regulate ambient temperature wherever they are installed, keeping the temperature at a preset value. This avoids the needless wasting of heat and provides a considerable saving of energy. #### THERMOSTATIC VALVES 970-972-966 971-973-967 **THERMOSTAT** CONTROL DEVICE 1100 974 975 *ICMA IDENTIFICATION **NUMBER 87** #### **PRODUCT RANGE** | THERMOSTATIC EXPANSION VALVE | S - COPPER, MULTI-LAYER | POLYETHYLENE PIPE | |------------------------------|-------------------------|-------------------| | | | | | Angled | Pipe fitting | Radiator | |--|--------------|---------------| | 970 Angled thermostatic expansion valve for multi-layer, polyethylene and copper pipe | M24x1.5 | G1/2" – G3/8" | | 972 Angled thermostatic expansion valve for multi-layer, polyethylene and copper pipe | G1/2" | G1/2" - G3/8" | | 966 Angled thermostatic expansion valve for multi-layer, polyethylene and copper pipe | G3/4" | G1/2" | | Straight | | | | 971 Straight thermostatic expansion valve for multi-layer, polyethylene and copper pipe | M24x1.5 | G1/2" – G3/8" | | 973 Straight thermostatic expansion valve for multi-layer, polyethylene and copper pipe | G1/2" | G1/2" - G3/8" | | 967 Straight thermostatic expansion valve for multi-layer, polyethylene and copper pipe | G3/4" | G1/2" | ## THERMOSTATIC EXPANSION VALVES - IRON PIPE | Angled | Pipe fitting and Radiato | |---|--------------------------| | 974 Angled thermostatic expansion valve for iron pipe | G3/8" - G1/2"* - G3/4" | | Straight | | | 975 Straight thermostatic expansion valve for iron pipe | G3/8" - G1/2"* - G3/4" | #### THERMOSTAT CONTROL DEVICE | item | Code | Connection | |---|-------------|------------| | 1100 Thermostat control device KEYMARK certified | 821100AC20* | M28x1.5 | #### **MATCHING FITTINGS** For heating systems with copper, polyethylene or multi-layer polyethylene pipes, use the following fittings to connect ICMA thermostatic expansion valves to the heating system: Item **Fitting Thread** | TOTAL CONTRACTOR CONTR | i ittiiig i iii ouu | |--|---------------------| | 90 Patented SICURBLOC fitting for copper pipe | G1/2" – M24x1.5 | | 93 EUROCONUS O-Ring leak-proof fitting for copper pipe | G3/4" | | 98 Fitting for multi-layer, polyethylene pipe | G1/2" | | 100 Fitting for multi-layer, polyethylene pipe | M24x1.5 | | 101 Fitting for multi-layer and polyethylene pipe | G3/4" | | 119 Fitting for multi-layer and polyethylene pipe | G3/4" | | | | #### THERMOSTATIC EXPANSION VALVES ICMA thermostat control devices can be installed on all thermostatic expansion valves of this line to convert heating systems with manual operating mode to automatic operating mode. To install the thermostat control device, simply replace the thermostatic expansion valve knob with an ICMA thermostat control device. This is done with a few easy operations. These are described in detail in the paragraph "Thermostat Control Device Installation and Regulation". The valves come in "straight" and "angled" versions so that they can be connected to two different types of pipes, at the side of the heating system: - The valves with GAS thread (side of heating system) are designed for connection to a steel pipe. - The valves with standard ICMA thread (side of heating system) are designed for connection to a copper pipe, a polyethylene pipe and a multi-layer polyethylene pipe, for which specific pipe fittings are provided. The valves are also equipped with a rubber, water-sealed socket. This allows the valve to be connected to the radiator easily and safely without the use of a sealant. Pressure loss can be detected by following the indications provided in the diagrams shown in the paragraph "Fluid Dynamic Characteristics". #### **TECHNICAL SPECIFICATIONS** Performance Fluids used: Water and glycol solutions 50% Maximum percentage of glycol: Maximum operating pressure: 10 Bar Maximum differential pressure: 1 Bar (with con trol device mounted) Temperature of heat transfer fluid: 5 to 120°C Valve obturator travel: 3.5 mm Connection with thermostat control devices: M28x1.5 **Materials** Liquid sealings: Control knob: Spring and obturator control rod: Body, cap and socket union: CW617N Brass - UNI 12165 - Nickel-plated CW617N Brass - UNI 12164 Large screw: > Stainless steel Peroxy EPDM RAL 9010 ABS White #### **VALVE INSTALLATION** Install ICMA thermostatic expansion valves on the heating system making sure to observe the direction of flow. The fluid must enter from the side on which the valve is connected to the system and go out toward the heating body. The following problems can occur if the valve is installed incorrectly: - A noise similar to a continuous sound of heavy hammering is due to the passage of fluid through the valve in the wrong direction. This problem can only be solved by inverting the valve with holder on radiators that have this problem, thus restoring the correct direction of flow of the fluid inside the valve. - A noise similar to a sound of heavy whistling during the succession of specified on and off times is due to an excessive flow inside the valve. This problem can be solved by keeping the system pressure under control, and equipping the system with variable rotation pumps along with differential pressure regulators, or by making use of differential by-pass valves. 970-1100 TECHNICAL DATA SHEET - 09/2019 - ENG #### **MAINTENANCE** (REPLACEMENT OF THE GLAND O-RING SEALS) In accordance with EN215 regulations, O-Ring seals can be replaced on all ICMA thermostatic valves even while the system is running without causing water leaks. To do this operation follow the instructions below: Remove the gland using a 14mm wrench as shown in the picture. The O-Ring seals can now be replaced O-RING CODES: P10002043 P10002243 Screw the gland back into the valve using a 14mm wrench. #### THERMOSTATIC CONTROL DEVICE Thermostat control devices are used to regulate ambient temperatures automatically wherever they are installed so that the temperature is kept at a preset value. Residential and working environments often contain other sources of heat, such as electrical appliances, stove-top cookers, computers, servers, and simple sunlight. Combined with the heating system, these additional heat sources cause a needless, uncontrolled increase in ambient temperature and the wasting of heat. Thermostat control devices detect variations in ambient temperature in the environments in which they are installed making it possible to keep the heat supplied by the heating system at optimal temperatures and to provide a considerable saving of energy. The ICMA, 1100, thermostat control device can be installed on all thermostatic expansion valves of this line. ICMA valves are supplied with the current manual control knob (for manual operation). The valves can be converted into thermostatic valves that function completely automatically by installing a thermostat control device. To install the thermostat control device, simply remove the thermostatic expansion valve control knob and replace it with the 1100 thermostat control device. This is done with just a few easy operations. These are described in detail in the paragraph "Thermostat Control Device Installation and Regulation". 1100 ## **ADJUSTMENT SCALE** Adjustment Scale: *****÷5 Temperature anjustment range: 7 ÷ 28°C The asterisk * indicates the freezing protection position, which corresponds to 7°C. #### **ADJUSTMENT SCALE** | 0 | ** | 1 | 2 | 3 | 4 | 5 | |-----|-----|------|------|------|------|------| | 0°C | 7°C | 12°C | 16°C | 20°C | 24°C | 28°C | 970-1100 TECHNICAL DATA SHEET - 09/2019 - ENG ### TECHNICAL SPECIFICATIONS #### **Performance** | Minimum adjustment calibration (anti-freeze position): | ts min | 7 °C (★) | |--|--------|-------------------| | Maximum adjustment calibration (position): | ts max | 28 °C (5) | | Saving condition (position): | | 20 °C (3) | | Maximum working pressure: | PN | 1000 KPa | | Maximum differential pressure: | Δр | 100 KPa | | Nominal capacity "qm N" (DP=10 KPa) angle-straight: | qm N | 190 Kg/h | | Maximum working temperature: | | 110 °C | | Maximum storage temperature: | | 50 °C | | Hysteresis: | С | 0.19 K | | Authority: | а | 0,9 | | Response time: | Z | 20 min | | Differential pressure influence: | D | 0,25 K | | Water temperature influence: | W | 0,7 K | | Control Accuracy: | CA | 0,2 K | | Connection to thermostatic expansion valves: | | M28x1.5 | Thermostat control device conform with Standard: EN215 The thermostatic valve is fitted with manual adjustment handwheel (rotation) #### **Materials** Knob and stop ring: Body and transmitter: Sensor liquid: Connection ring: Compensation pin: Compensation pin spring: RAL 9010 ABS White RAL 9010 PA6 30% F.V. Thermostatic ethyl-acetate CW617N Brass - UNI 12164 - Nickel-plated CW617N Brass - UNI 12164 SH steel for springs - Phosphated #### **OPERATIONS** The thermostat head is made of a series of plastic parts containing a thermostatic component that is sensitive to temperature variations. Operation of the thermostatic component is based on the expansion of the thermostatic liquid contained inside it: - when the ambient temperature rises, the thermostatic liquid increases in volume, resulting in the lengthening of the component; - when the ambient temperature drops, the thermostatic liquid decreases in volume, resulting in the shortening of the component. The variations in length of the thermostatic component are transmitted to the expansion valve obturator by a small steel rod. These movements constantly regulate the flow of the heat transfer fluid to the heating component so that the temperature set on the thermostat control device remains constant over time. The thermostat control device components are specially made of plastic materials to prevent the valve heat and that irradiated by the heating component from being transmitted to the thermostatic component by contact or induction. This prevents possible malfunctions in the control device. 970-1100 TECHNICAL DATA SHEET - 09/2019 - ENG The thermostat control device temperature is regulated by turning the numbered knob and bringing the corresponding symbol to the desired temperature close to the head indicator (see the following paragraph for more details). - Position 3 on the adjustment scale corresponds to an ambient temperature of 20°C. This is the recommended temperature for ensuring a comfortable environment and reduced heat consumption and costs. - The asterisk "*" indicates the freezing protection position. When the thermostat control device is set to this position, the valve turns on only if the ambient temperature drops below 6°C. This setting is recommended when one is absent for long period of time during the winter months, or when one wishes to aerate the premises when outside temperatures are very low. #### **DIRECTION OF THERMOSTAT CONTROL DEVICE** The ICMA thermostat control devices should be installed in the horizontal position. Any other position could compromise their correct functioning. #### **POSITIONING OF RADIATORS** The thermostat control devices should never be placed inside niches or radiator boxes, behind curtains or exposed to direct sunlight. These conditions could result in incorrect detection of the actual ambient temperature and compromise the proper functioning of the device. #### THERMOSTAT CONTROL DEVICE INSTALLATION AND REGULATION #### **CONVERSION OF MANUAL VALVES TO THERMOSTATIC VALVES** Remove the protective cover from the knob using a small screwdriver. Turn the knob in the counter clockwise direction to remove it com-pletely from the valve. Unfasten the white adapter from the valve body by simultaneously pulling and bending it. #### INSTALLATION OF THERMOSTAT CONTROL DEVICE To facilitate installation of the thermostat control device. turn the knob counter clockwise and bring it to the number 5. Install the thermostat control device on the valve body keeping the indicator turned upward so that it is clearly visible. Screw the thermostat control device ring on the valve body blocking it. Turn the knob a few times to adjust the compo-nents. #### REGOLAZIONE DELLA TEMPERATURA **INDICATOR ADJUSTMENT SCALE KNOB** The knob indicates the numbers from 0 to 5. which correspond to specific temperatures (see the adjustment scale shown at side). Set the desired temperature simply by turning the knob to the corresponding number close to the indicator. #### **ADJUSTMENT SCALE** | 0°C | 7°C | 12°C | 16°C | 20°C | 24°C | 28°C | |-----|-----|------|------|------|------|------| | 0 | * | 1 | 2 | 3 | 4 | 5 | #### **TEMPERATURE ADJUSTMENT** Turn the thermostat control device knob to one of the setting num-bers from 0 to 5 shown on the knob. Setting ex-ample on the n°2. The same num-bering is also indicated on the lower part of the device. Identify the hole before and the hole after the number set. Insert the forked pin inside these two holes and push until completely inserted. The knob is now blocked at the desired setting. #### **BLOCKING OF TEMPERATURE** In order to limit the temperature, simply identify the two holes located right after the number set. Insert the forked pin inside these two holes and push until completely inserted. The knob can now be move from 0 to the number set. The forked pin is sold separately from the control device. > FORKED PIN CODE: 111100AC06 971-973-967 TECHNICAL DATA SHEET - 09/2019 - ENG #### **DIMENSIONS AND CODES ARTICLES** #### THERMOSTATIC EXPANSION VALVES - COPPER, MULTI-LAYER, PE-X PIPE | 10 | BAA | |----|----------| | A | <u> </u> | | CODE | Ø1 | Ø2 | Α | В | С | D | |-----------|-------|---------|----|----|----|-----| | 82970AC06 | G3/8" | M24X1.5 | 53 | 24 | 53 | 102 | | 82970AD06 | G1/2" | M24X1.5 | 55 | 24 | 53 | 102 | | 82972AC06 | G3/8" | G1/2" | 53 | 24 | 53 | 102 | | 82972AD06 | G1/2" | G1/2" | 55 | 24 | 53 | 102 | | 82966AD06 | G1/2" | G3/4" | 55 | 24 | 53 | 102 | | CODE | Ø1 | Ø2 | Α | В | С | D | |-----------|-------|---------|----|----|----|-----| | 82971AC06 | G3/8" | M24X1.5 | 50 | 24 | 58 | 107 | | 82971AD06 | G1/2" | M24X1.5 | 51 | 24 | 58 | 107 | | 82973AC06 | G3/8" | G1/2" | 50 | 24 | 58 | 107 | | 82973AD06 | G1/2" | G1/2" | 51 | 24 | 58 | 107 | | 82967AD06 | G1/2" | G3/4" | 51 | 24 | 58 | 107 | #### THERMOSTATIC VALVES - IRON PIPE | CODE | Ø1 | Ø2 | Α | В | С | D | |------------|-------|-------|----|----|----|-----| | 82974AC06 | G3/8" | G3/8" | 53 | 23 | 53 | 102 | | 82974AD06* | G1/2" | G1/2" | 55 | 23 | 53 | 102 | | 82974AE06 | G3/4" | G3/4" | 57 | 25 | 53 | 102 | | CODE | Ø1 | Ø2 | Α | В | С | D | |------------|-------|-------|----|----|----|-----| | 82975AC06 | G3/8" | G3/8" | 50 | 23 | 58 | 107 | | 82975AD06* | G1/2" | G1/2" | 51 | 24 | 58 | 107 | | 82975AE06 | G3/4" | G3/4" | 53 | 25 | 58 | 108 | * ICMA IDENTIFICATION NUMBER 87 #### HYDRAULIC CHARACTERISTICS #### ANGLED THERMOSTATIC EXPANSION VALVES Angled thermostatic expansion valves G3/8" - Art. 970-972-974 **PRESSURE DROP DIAGRAM** | Kv [m³/h] | | | |-----------|------|--| | AO | 2,11 | | | S-2K | 0,60 | | | S-1K | 0,33 | | # Angled thermostatic expansion valves G1/2" - Art. 970-972-974-966 **PRESSURE DROP DIAGRAM** | Kv | [m³/h] | |------|--------| | A0 | 2,21 | | S-2K | 0,60 | | S_1K | 0.33 | #### **HYDRAULIC CHARACTERISTICS** # Angled thermostatic expansion valves G3/4" - Art. 974 PRESSURE DROP DIAGRAM # Kv [m³/h] A0 2,53 S-2K 0,60 S-1K 0,33 #### STRAIGHT THERMOSTATIC EXPANSION VALVES ## Straight thermostatic expansion valves G3/8" - Art. 971-973-975 #### PRESSURE DROP DIAGRAM | Kv [m³/h] | | | |-----------|------|--| | AO | 1,12 | | | S-2K | 0,60 | | | S-1K | 0,33 | | # Straight thermostatic expansion valves G1/2" - Art. 971-973-975-967 PRESSURE DROP DIAGRAM | Kv [m³/h] | | | |-----------|------|--| | AO | 1,58 | | | S-2K | 0,60 | | | S-1K | 0,33 | | Straight thermostatic expansion valves G3/4" - Art. 975 PRESSURE DROP DIAGRAM